Color demosaicking by local directional interpolation and nonlocal adaptive thresholding
نویسندگان
چکیده
Single sensor digital color cameras capture only one of the three primary colors at each pixel and a process called color demosaicking (CDM) is used to reconstruct the full color images. Most CDM algorithms assume the existence of high local spectral redundancy in estimating the missing color samples. However, for images with sharp color transitions and high color saturation, such an assumption may be invalid and visually unpleasant CDM errors will occur. In this paper we exploit the image non-local redundancy to improve the local color reproduction result. First, multiple local directional estimates of a missing color sample are computed and fused according to local gradients. Then nonlocal pixels similar to the estimated pixel are searched to enhance the local estimate. An adaptive thresholding method rather than the commonly used nonlocal means filtering is proposed to improve the local estimate. This allows the final reconstruction to be performed at the structural level as opposed to the pixel level. Experimental results demonstrate that the proposed local directional interpolation and nonlocal adaptive thresholding (LDI-NAT) method outperforms many state-of-the-art CDM methods in reconstructing the edges and reducing color interpolation artifacts, leading to higher visual quality of reproduced color images.
منابع مشابه
W Adaptive Denoising of CFA Images for Image
In single sensor digital color cameras at each pixel it captures only one of the three primary colors so the full color image is obtained by interpolating all other missing color samples at that pixel this process is the color demosaicking process. When we capture the images using digital cameras there is some sensor noise is introduced in image. This type of noise is introduced in all type of ...
متن کاملA Demosaicking Algorithm with Adaptive Inter-Channel Correlation
Most common cameras use a CCD sensor device measuring a single color per pixel. Demosaicking is the interpolation process by which one can infer a full color image from such a matrix of values, thus interpolating the two missing components per pixel. Most demosaicking methods take advantage of inter-channel correlation locally selecting the best interpolation direction. The obtained results loo...
متن کاملNovel Demosaicking Method Using Nonlocal Similarity Fusion
Although most demosaicking methods assume the existence of high local correlation in estimating the missing color components, such an assumption may fail for images with high color saturation and sharp color transitions. This paper presents a demosaicking scheme by exploiting both the variance of color differences (VCD) and the non-local similarity. First, the missing green components are estim...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملColor demosaicking via fully directional estimation
Given a natural image from the single sensor, the key task is to properly reconstruct the full color image. This paper presents an effectively demosaicking algorithm based on fully directional estimation using Bayer color filter array pattern. The proposed method smoothly keeps access to current reconstruction implementations, and outperforms the horizontal and vertical estimating approaches in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 20 شماره
صفحات -
تاریخ انتشار 2011